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A Porosity Formation and Flattening Model 
of an Impinging Molten Particle 

in Thermal Spray Coatings 
H. Fukanuma 

Thermal spray coatings have porosity; however, reasons for the production of porosity during the coating 
process are not known. This paper proposes a physical and mathematical model for the production of po- 
rosity by considering deformation of a molten particle during thermal spray coating processes. The theo- 
retical model shows that the impinging velocity, the ambient gas pressure, the particle diameter, and the 
molten material viscosity contribute to producing porosity. This paper also proposes that there is a po- 
rosity distribution along the splat radius and that most of the porosity exists in the periphery of the splat. 
Also, a flattening model proposed in this work agrees well with the results of Engel (Ref 1). 

1. Introduction 

THE boundary structure between splats and the substrate or pre- 
viously coated layers greatly affects the physical characteristics 
of thermal spray coatings. In particular, porosity in the thermal 
spray coating is an important factor in determining the charac- 
teristics of the layers. At present, the structures of splat inter- 
faces are being clarified by various studies (Ref 2-6), but there is 
not yet an established theory of the mechanism of porosity for- 
mation in the layers. In this paper, the porosity formation 
mechanism of thermal spray coatings is mathematically ana- 
lyzed under several assumptions. 

Although there have been some studies concerning the flat- 
tening process, they have not theoretically described the flatten- 
ing process as a function of time (Ref 7, 8). In the present work, 
a particle flattening model is proposed from a new physical 
viewpoint. The model includes the radius expansion as a func- 
tion of time, so that the flattening time can be calculated. 

2. Theory 

2.1 Definition of Porosity 
The structure of a thermal spray coating can be pictured as la- 

mellar (Fig. 1), where a first layer of splats is in contact with the 
substrate. It is known that gaps exist between the substrate and 
the splats, and between the splats themselves. The schematic of 
an enlarged interface is shown in Fig. 2. It is assumed that the in- 
terface consists of two parts, the gap and the contact region. The 
true contact region is defined as the interface where chemical 
bonding exists. It may be a very small proportion of the interface 
(Ref 3). The contact distance should be at the atomic level such 
that gas molecules or atoms do not pass through the interfaces. 
Arata et al. have shown that these gaps are continuous (Ref 5, 6). 
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Fig. 2 Schematic of interface between splats or a splat and substrate. 
The integral of the given zdS element is termed the gap volume 

These studies suggest that there is little probability that closed 
pores exist in the interface. 

The porosityfp of  the thermal spray coating is defined as: 

V 

fP= V s -- ~Vg (Eql)  

where Vg is the total gap volume in the intersplat and splat-sub- 
strate interface in the unit volume of  thermal spray coating and 
Vs is the total solid volume in the unit volume of  the thermal 
spray coating. The total gap volume, Vg, is defined as follows: 

V - 1 ~ zdS (Eq 2) 
g - 2  $ 

where z is a vector parallel to the z-axis with a length Izl = z (the 
z-axis is perpendicular to the substrate surface); dS is a vector 
perpendicular to the small area dS on the splat surface, positive 
to the outer direction of  the splat and with length equal to the sur- 
face area ofdS; and S is the total surface area of  all splats in the 
unit volume of  the coating. Vg is the volume sum of  every dVin  
the splat interface of  the unit volume. Since dV = zdS, Vg can be 
obtained by the integration ofzdS. However, when integration is 
carried out for the surface area o f  every splat, integration is per- 
formed twice (i.e., both the lower and upper surfaces of  each 
splat are integrated) and therefore the resultant value is divided 
by two to calculate the total gap volume. 

Fig. 3 Schematic of gaps between splat and substrate or previously 
deposited layers 

The "z-distribution" of  the interface can describe thermal 
spray coatings better than porosity. In other words, to know the 
"z-distribution" is to know the interface structure. Although it is 
considered to be a more important factor than porosity, it is dif- 
ficult to measure and analyze theoretically. 

It is reasonable to assume that Vs and Vg can be replaced by a 
splat volume and the gap volume under the splat, respectively, as 
shown in Fig. 3, because the cylindrical surface area of  the splat 
(i.e., the surface area of  the splat edges) is negligible compared 
to its flat surface area when it is a thin disk. When the diameter 
and the thickness of  the splat are Dm and h, respectively, the two 
flat surface areas o f  the top and bottom disks are 2x(Dm/2) 2 and 
the cylindrical surface area is r~Dmh. The ratio o f  lr.Dmh to 
2r~(Dm/2) 2 is expressed as: 

XD mh 4 1 

D 2 - 3  D 3 (Eq3) 

where do is the diameter of  the molten particle at the moment of  
impingement. Actually, because Eq 3 is a negligibly small value 
compared to Eq 1, when Din~do is larger than 3, the cylindrical 
area is negligible compared to the area of the fiat surface. Here- 
after, the porosity in the case of  a single splat is discussed instead 
of  the unit volume of  the thermal sprayed coating. 

22  A Mathemat ica i  Model  o f  Porosi ty  Format ion  

2.2.1 Gas Compression in a Hole by a Rigid Body 
Impingement 

Initially, consider a gas compressed by a moving rigid body. 
The rigid body plunges into a hole on a substrate at initial veloc- 
ity v0 and compresses the gas, as shown in Fig. 4. When the rigid 
body velocity is reduced to v, the gas pressure is expressed by 
the polytropic equation 

P = kV -n (Eq 4) 

where P is gas pressure, k is the gas constant, V is gas volume, 
and n is the polytropic exponent. It is assumed that the gas is 
ideal, there is no gas leakage through the boundary between the 
rigid body and the hole wall, and there is no friction between the 
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Fig. 4 Schematic of gas compression by a moving rigid body 
Fig. 5 Schematic of gas compression by a molten disk 

body and the wall. In this case, n = 1 for isothermal compres- 
sion, and n is 7 = C p / C v  for a reversible adiabatic compression, 
where Ca and Cv are the specific heat of  gas at constant pressure 
and constant volume, respectively. When the gas volume is com- 
pressed to Vfrom V 0 and the velocity of  the rigid body is reduced 
to v from v0, under the reversible adiabatic condition, the energy 
transfer to the gas from the rigid body equals the energy that the 
rigid body loses. So the next equation holds: 

~v =~v 1 2 
- P d V  - kV'-V d V  = ~-m(v 0 - v 2) (Eq 5) 

v0 v0 

where m is the mass of  the rigid body. 

2.2 .2  G a s  C o m p r e s s i o n  in  a H o l e  b y  a M o l t e n  D i s k  

Next, consider the gas compression in the hole by a molten 
disk impinging on the substrate instead of  the rigid body, as 
shown in Fig. 5. I f  there is no friction in the molten material and 
at the interface between the molten material and the wall, and 
there is no flow parallel to the substrate in the liquid and no gas 
leakage through the interface, the molten material ABCD com- 
presses the gas in the hole as in the case of  the rigid body. Since 
the mass of  ABCD can be replaced by k ip(V-  V0), where kl is a 
constant and p is the density of  the molten material, the follow- 
ing equation holds: 

( 1 
- kV' -VdV = ~klp(V o - V)(Vo 2 - v z) (Eq6) 

Vo 

There are other conditions that may affect the gas volume V 
and must be considered in the case of  a molten material com- 
pressing the gas: 

�9 Gas leakage through the boundary at the hole wall during 
the compression process 

�9 Friction between the molten material and the hole wall 

�9 Viscous work in the molten material 

�9 Heat transfer from the liquid to the gas and from the gas to 
the substrate 

�9 Flow of the molten material parallel to the substrate surface 

�9 The contact angle between the molten material and the sub- 
strate or previously coated layers 

�9 The vapor pressure of  the molten material (unless this is 
negligible) 

The parameter n can be used in place of  7 and represents the 
difficulty of  compressibility. The parameter n is influenced by 
the above factors and is larger than 1. The molten material stops 
in the hole when v = 0, and the next equation holds: 

j.v 1 v)v  
_ k V ' - n d V  = ~klP(V 0 - 

Vo 

Integrating Eq 7 and substituting k V~ "  = Po  yields the equation: 

(~001 l - n - 1  (n_  1)klPV 2 

V 2P 0 (Eq 8) 
1 - - - -  

v0 

where P0 is the gas pressure at gas volume V 0. 
When V / V o < <  1, because 1 - V/Vo_~ 1 and (V/V0) 1-n 

- 1 = ( V / V o )  ~-n, Eq 8 can be simplified as: 

r ~ n l / ( l - n )  

V [ ( n -  1)klov~/ 
- -  = ] 2--P-~ -] (Eq 9) 
Vo L 0 J 

The ratio of  the compressed volume V to the initial volume V0 
decreases as the impinging velocity increases and the ambient 
pressure decreases; that is, the porosity decreases under these 
conditions. Figure 6 shows the relationship between the gas 
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compression ratio and the impinging velocity in Eq 8 and 9 when 
13 = 8000 kg/m 3, P = 105 Pa, kl = 10, and n = 1.5 or 2. It also 
shows that V/Vo in Eq 9 agrees with V/Vo in Eq 8. The expression 
kl = 10 means that when the molten disk of  10 ~m thickness im- 
pinges on the substrate, the molten material enters into the hole 
to 1 lam depth. 

2.2.3 Solidification Time of  Molten Material in a Hole 

The material is pressed away from the developing gas inter- 
face if  the molten material does not solidify and the gas pressure 
is high. I f  the molten material does solidify in the hole, then the 
solidification time of  the material must be considered. Figure 7 
is a schematic of  the solidification of  molten material. When the 
temperature of  the substrate and the molten material are Ts0 and 
To, respectively, at time 0, and Ts0 is held constant and the mol- 
ten material thickness is semi-infinite, the solidified thickness X 
at time t is expressed as: 

X= 21~ ~*~st (Eq 10) 

where ~ is a numerical constant (detailed in Eq 11 ), and ~r and t 
are the thermal diffusivity of  the solidified material and time, re- 
spectively (Ref9). The parameter ~ is found from: 

exp(-;L 2) K L ~ (To-Tm) " ~ EL ) 

rs0) / 

- (Eq ll) 
Cs(r m - rso) 

where Ks and Cs are the thermal conductivity and the specific 
heat of  the solidified material, and KL, EL, Tm, and L are the ther- 

Fig. 7 Schematic of solidification front of molten material 
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Relationship of solidified thickness and time for molten cop- 

mal conductivity, the thermal diffusivity, the melting tempera- 
ture, and the latent heat of  the solidified material, respectively. 

Figure 8 shows the results calculated for a copper substrate 
sprayed with copper particles at 2000 and 2500 K using the 
physical property values in Table 1. Now, consider a cylindrical 
hole with a diameter and depth of  I lam and 1 B, and assume that 
the solidification thickness is half  o f  the hole diameter. Because 
the solidification thickness is 0.5 Bm in a 1 Ixm-diam hole, the 
solidification time of  the molten copper in the hole is about 3 • 
10 -9 s when the initial temperature o f  the molten copper is 2000 
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Table 1 Physical properties of copper 

Physical Solid Molten 
property copper copper 
Density, Kg/m 3 8780 8780 
Specific heat, J/Kg. K 427 495 
Heat conductivity, W/m �9 K 341 180.4 
Thermal diffusivity, m/s 9.11 x 11) 5 4.15 x 10 5 
Latent heat, KJ/Kg 205 ... 
Melting point, K 1357.6 ... 

K, and about 5 x 10 -9 at 2500 K in Fig. 7. When the solidifica- 
tion time is 5 x 10 -9 s, the molten copper enters the hole to a 
depth of  0.5 ktm or less at an impinging velocity of 100 m/s, and 
to a depth of  1 ~tm or less at an impinging velocity of  200 m/s. 
The true solidification time is greater than the calculated results 
because the heat transfer coefficient at the interface between the 
substrate and the solidified material is far smaller than the as- 
sumption used for a thermal spray coating. 

Consider a 10 ktm thick disk of  molten copper compressing 
gas in the hole ( l  t.tm deep) when the impinging velocity is 200 
m/s. Substituting v0 = 200 m/s, p = 8780 kg/m 3, P0 = 1 atm = 
1.013 • 105 Pa, k l =  10, and n =  2, V/Vo = 5.8 x 10 -4 is ob- 
tained. Because 1I/I1"0 = 0.58 • 10 -5, the molten copper almost 
reaches to the hole bottom. It takes 5 x 10 -9 s for molten copper 
to reach the bottom at speeds of  at least 200 m/s. However, be- 
cause the velocity of  the particle is decelerated by the com- 
pressed gas in the hole, it takes longer than 5 • 10 -9 s for the 
molten material to reach the bottom. Because solidification be- 
gins from the hole wall during the compression process, when 
the top of  the molten material reaches to the hole bottom most 
material in the hole is solidified. When the hole diameter and 
depth are of  the order o f  1 I.tm or less, it is reasonable to assume 
that the solidification of  the top o f  the molten material in the hole 
occurs during the compression process. The remaining high- 
pressure gas leaks through the boundary, and the pressure equal- 
izes at ambient pressure. 

Only one simply shaped hole has been considered for poros- 
ity formation with respect to the trapped gas phenomenon. It is 
reasonable to assume that the hole volume V0 represents the sum 
of  hole volumes on a unit surface area of the substrate or pre- 
viously coated layers. The argument also holds when the hole 
shapes are not cylindrical. 

2.3 A Mathematical  Model  o f  Flattening 

Flattening models of  liquid droplets that impinge on a rigid 
fiat surface have been proposed (Ref 1, 7, 8), and this paper de- 
velops a prior investigation (Ref 10). Because molten particles 
impinge on a substrate, flatten, and solidify, the particle-gas in- 
teraction during flattening must be considered to understand po- 
rosity formation. 

2.3.1 Radial Expansion Shortly After Impingement 

It is assumed that immediately after a molten particle im- 
pinges on a fiat substrate, a thin radial disk begins to spread, and 
that the splat thickness is a constant during the flattening, as 
shown in Fig. 9. The disk spreads under the kinetic energy that is 
mainly dissipated by viscous work. The disk thickness is prob- 

Z 

t = o o  

Fig. 9 Schematic of the flattening process 

ably a function of  the impinging velocity, the particle diameter, 
and the viscosity of  the molten material. The assumption agrees 
with the results o f  high-speed photographs of  a water drop 
spreading in Engel 's investigation (Ref 1). However, in his in- 
vestigation Engel assumed that the disk thickness at center is 
half  of  the peripheral thickness. The following are also assumed: 

�9 The flattening process is isothermal (i.e., the viscosity and 
density of  the molten material are constant). 

�9 The kinetic energy that the particle possesses at impinge- 
ment is dissipated only by viscous friction in the molten 
material. 

�9 The friction work in the disk only contributes to the energy 
dissipation, but the friction work in the part of  the sphere on 
the disk can be negligibly small. 

�9 The surface tension of  molten material, the interface ten- 
sion between the material and the substrate, and gravity can 
also be negligible, as they are generally far less than the ki- 
netic energy experienced during thermal spraying. 

Additional assumptions from the present work are: 

�9 The impinging particle is completely molten. 
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�9 The particles impinge perpendicularly on the substrate or 
the previously coated layers, which are smooth. 

�9 Flattening is completed before solidification. 

�9 The particle does not rotate at impingement. 

�9 There is no flow in the particle before impingement. 

Consider a molten particle of  diameter do that impinges at ve- 
locity v0. At time t = 0, a bottom portion of  the particle is de- 
formed to a fiat disk whose thickness and radius are h and R, 
respectively. When cylindrical coordinates are used, the volume 
of  0AB, now identified as co, is expressed as: 

o3 = f nr2dz (Eq 12) 
0 

where r is the cord radius made by the sphere of  AB length, and 
H is the height of  the bottom portion of the sphere, as shown in 
Fig. 9. The parameter r can be expressed as: 

- t - ~ - - z )  =Zao-Za  (Eq 13) 

Substituting Eq 13 in Eq 12, the expression becomes: 

When the portion 0AB in the sphere is deformed to the flat disk 
whose radius and thickness are R and h, respectively, the volume 
0AB equals the volume of  the disk. Then: 

(~ 2 1 3 ) 7thR 2 = n doll  - -~H (Eq 15) 

When H << do then: 

dH 
-~- = [Vo[ = v 0 (Eq 16) 

Differentiation ofEq 15 by t leads to an expression for the ex- 
pansion rate of  the disk. Because H = v0t, the expansion rate can 
be expressed as: 

H 
dH d o 1 - d  0 

- -d  - -dt 

1 _ 2H 
3ao 

_ v0~t 
v0~~ 1 d0 

1' 2v~ 

3do 

(Eq 17) 

When H/do << 1, Eq 17 is simplified as: 

- ~ - =  V 0 (F-xt 18) 

Fig. 10 Schematic of  the flow of  an impinging jet 

Consequently, the radial expanding rate o f  the disk is obtained 
shortly after impingement. 

2.3.2 T h e  F l o w  Fie ld  in the  D i s k  

Consider a jet impinging on a flat surface as shown in Fig. 10, 
the flow field consists of  four distinct zones. The maximum ra- 
dial velocity Urn along the r axis is (Ref 11-13): 

U m o~ r, r < R 0 (Zone III) 

1 
Urn o: -r, r > R 0 (Zone IV) (Eq 19) 

Flow zones III and IV are divided at r = R0. Urn increases propor- 
tionally with r and becomes maximum at r = R0, then decreases 
in inverse proportion to r. 

When the flow field in the disk of  the impinged particle is de- 
fined as u = u(ur, uo, Uz), then Ur, u0, and u z are the r, O, and z com- 
ponents of  the flow field, respectively, in cylindrical 
coordinates. From the analogy of  impinging jets, it is assumed 
that the radial velocity Ur is proportional to the radius when r < 
R 0 and is inversely proportional to the radius when r > R0. The 
parameter R 0 is a function of  the impinging velocity, the particle 
diameter, and viscosity, and it is assumed that R0 is close to the 
radius o f  the impinging particle (do/2). Therefore the flow field 
U = U(Ur, U0, uz)iS: 

u r = Cl(t  ) z (2h - z ) r ,  u o = O, 

and 

C2(t)z(2h - z )  u r = , u 0 = 0, u z = 0 for r > R 0 (Eq 20) 
r 

where h is the disk thickness and Cl(t) and C2(t) are coefficients 
that are a function of  time. 
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The flow field must satisfy the equation of  continuity, 
namely div u = 0, and meet the following requirements: (a) no 
shear stress on the free surface; (b) no flow on the substrate sur- 
face; and (c) when r ~ 0% u r --~ 0. The flow field u satisfies all 
o f  these conditions. The flow field is symmetrical around the z- 
axis (because no particle rotation at impingement is assumed), 
so u0 equals 0. 

The flow field could be assumed to be laminar in the disk 
when the impinging velocity is less than 250 rn/s (Fig. 11), be- 
cause the Reynolds number is substantially below 5000. For ex- 
ample, Reynolds number 5000 occurs when density p, the mean 
radial flow velocity Ur, representative length h, and viscosity Ix 
are 104 kg/m 3, 250 m/s, 2 Ixm, and 10 -3 Pa- s, respectively. 

Because it is expected that the flow field decreases rapidly 
with time, then: 

Cl(t ) = ClO e-at (Eq21) 

C2(t ) = C20 e-at (Eq 22) 

where CI0, C2o, and (~ are constants. There is a volume balance 
of  material about R0 such that the material that flows from the in- 
side region ofR 0 is the same volume that flows into the outside 
region of  R0. Therefore: 

_ ;C2oe-t~tz(2h - z )  
;Cloe-atz(2h z)Rodz = dz (Eq23) 
o 0 RO 

Equation 23 is simplified as: 

C2o = CIO R2 (Eq 24) 

The flow field can be determined when Cl~ C20, and ot are 
known under certain boundary conditions. For example, when 
the disk radius becomes R 0 and R at times to and t, respectively, 
the fluid volume outside R o equals the volume that flows out of  
R o for the time from to to t. Hence at the time difference x = t - to: 

~h(R2 _ R~) = 2~Ro Sl ; C2o e-e'~z(2h - z) 
o Ro dzdx (Eq25) 

Equation 25 is simplified as: 

4C2oh2(1 - e-a~) 
(Eq 26) R2 - R2 = 3(~ 

When Eq 26 is differentiated and x = 0 is substituted, then the 
expression becomes: 

3R o ---0'R=RO -- (Eq 27) 

When "~ = 0, t = to, and R = Ro, substituting t = to in Eq 17, the 
expression becomes: 

rot 0 

t~176 ~ 1 2V0t0 

3do 

When R0 -< do, V0to/d0 is negligible in Eq 28, then: 

2C20 h2 ./-C~ 
3R ~ = v 0 ' q ~  (Eq29) 

Then, (?2o can be determined as follows: 

3R~176 ~ o  

C2~ 2h 2 2h 
(Eq 30) 

Substituting Eq 30 in Eq 24, the expression becomes: 

3v~ 

Cl~ = 2h2R0 2h 
(Eq31) 

In Eq 26, letting R = Rm when x = 0% the expression becomes: 

2RoY 0 ./-aT 
ct = 'q ---~ (Eq 32) 2 2 (R m - Ro) 2h 

Because ClO, C2o, and ot are found above, the flow field is deter- 
mined. 

2.3.3 A Flattening Model 

From an energy balance, we find: 

r s s 
YL dS - YSL dS = 0 

o s O o 
(Eq 33) 

where 
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�9 Ek is the kinetic energy of  the particle at the moment of  im- 
pingement. 

�9 I ~dt is the viscous work in the molten material during 
0 

flattening. 

�9 yLdS is the surface energy that the molten material ob- 
So 

rains from surface area SO to S1 during flattening. 

�9 7scdS is the interfacial energy obtained by the molten 
0 

material wetting the area $2 of  the substrate or the coated 
layers during flattening. 

�9 ~'t. and 7sL are the surface tension and the interfacial tension, 
respectively. 

�9 �9 is the energy that the molten material dissipates by inter- 
nal friction per unit time during flattening (Ref 14). 

From the flow field u, because the disk thickness h is thin 
(i.e., h is negligibly small compared to di.sk radius R), 3Uz/-dr is 
negligibly small compared to 3Ur/3Z and �9 is written as: 

2 

where la is the viscosity of  molten material and V is the entire 
volume of  molten material. Substituting Eq 20 in Eq 34 and then 
substituting the result in Eq 33, assuming that the surface and in- 
terfacial energy are negligible, the expression becomes: 

~2 pd3v2o-I~o~ 

g ~ - =0  (Eq35) 
-Io o r 

Substituting Eq 30, Eq 31, and Eq 32, and h = d~/6R2m in Eq 35, 
the expression becomes: 

d 
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Fig, 13 Relationship between the flattening ratio and the parameter e 

~pd3v029"~/3~gV0RoR7 ( ! R2 Rm] 

12 d~"(R2-R2)o .. 0 i - 2  +T~-~2 + l n - ~ - ~ = 0 2 R  m ~0)  (Eq36) 

Letting Dm = 2Rm, R0 = ed0/2, where e is in the neighborhood of  
1, and substituting them in Eq 36, the expression becomes: 

e l - - +  ~ +  In 
2 0  

(Eq37) L 0) (" e2d 2 ~ - 27"/f  

Dm) 

When e = 1, Eq 37 is approximated as follows: 

Dm / ~ ]  1/6 
do0 = 1.06 (Eq 3 8) 

When Reynolds number (Re) is pd0v0/g, the expression be- 
c o m e s "  

D 
= 1.06 Re 1/6 (Eq 39) 

do 

The disk diameter at t = oo is determined, 
Madejski's theory, Jones' theory, and this theory are shown in 

Fig. 12, where the flattening ratios as a function of  Reynolds 
number are shown. Madejski's and Jones' theories are, respec- 
tively (Ref 8, 9): 
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D 1.294 Re 1/5 (F,q 40) 
do 

D 1.059 Re 1/8 (Eq 4l) 
do 

In actual flattening process, it is considered that Ro/do must 
change with time and that therefore e probably changes from 1 
to 2. When the impinging velocity is faster, Ro/do must be larger. 
However, Din~do changes little with e between 1 and 2, as shown 
in Fig. 13, so e can be considered a constant. 

Substituting Eq 30 and Eq 32 in Eq 26, when R = D/2, Ro = 
do/2, and R m = Din/2, Eq 26 is simplified as: 

~00: D2m ( D 2 _  /ex  p  -(do 1 
DmV0 

(Eq42) 

The spreading disk diameter is determined as a function of time. 
When 1~(Din/do) 2 << 1, Eq 42 is simplified as: 

D -  Dm "~] exp(_2~3 ~o ~ /  
do do 1- | o m| 

( 

(Eq43) 

Substituting Eq 39 in Eq 43, the expression becomes: 

R 

Ro - - - ~  

= dR 
dt 

Fig.  15 
substrate 

Schematic of the interaction between molten particle and 

D = 1.06 (Re)!/6~/ (_3.67Vo ~ ) ( E q 4 4 )  
d o 1 - exp~ do (Re)l/6 

From Eq 43, the spreading time is determined as: 

1 doD m ~ 1 
"t = 2,~/~ Vo do log l 2 (Eq 45) 

l/ m / 
WhenR = R0, t = to. Substituting H = v0t, h = 2d~'3D 2, andR 0 = 
d0/2 in Eq 15, because H/do is negligible, to is determined as fol- 
lows: 

1 d o d  o 
t o - ~ -  Vo Dm (Eq 46) 

Because t = t o + x, t is expressed as: 

1 doOm(2d2 
- -  - - [  ~ + log 

t -  2"~- v0 dotD m 

I 1 -  
L 

2 

JJ 

(Eq 47) 

When the first term in Eq 47 is negligible, t becomes: 

1 d o D m 1 
t -  2 ~ -  v 0 d o log 2 (Eq 48) 

Substituting Eq 39 in Eq 48, the time for the disk to spread to D 
= 0.9D m is: 

d 0 D m 
t0. 9 = 0.479 ~00 ~ = 0.508 5Rev0 1/6 (Eq 49) 

and the time for the disk to spread to D = 0.99 Dm is: 

d o O m 
t0.99 = 1'13~00 ~-0 = l'205Rel/6v0 (Eq 50) 
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Fig. 17 Relationship between accumulative distribution of gap vol- 
ume and R/Rrn, when n = 2 

where t0.9 and/0.99are the times when the disk diameter becomes 
0.9D m and 0.99 Din, respectively. Equations 49 and 50 show that 
determining the real spreading time is difficult, because the 
spreading rate is slower in the neighborhood of  the maximum di- 
ameter. Figure 14 shows that the theory agrees well with the ex- 
perimental results of  Engel (Ref 1) and shows Madejski 's and 
Jones' flattening ratios. 

2 . 4  Porosity Formation Model with Flattening Process 

The simple theory of  porosity formation was described in 
section 2.2 for the case where a molten disk impinges on a fiat 
substrate having small holes. This section describes a porosity 
formation model that considers the flattening process. When 
V(R) is the gap volume per unit area at radius R of  the splat, the 
entire gap volume Vg between the splat and the substrate surface 
or previously sprayed layers is expressed as: 

Vg = ;= V(R)Er~RdR (Eq 51) 
0 

It is assumed that the impinging velocity v0 affects the gas be- 
tween the splat and substrate surface in the region inside the ra- 
dius R0 and that the radial spreading rate dR/dt = Vg affects the 
gas in the region outside R0, as shown in Fig. 15. Because Eq 9 
is the approximation of  Eq 8, when v0 ---> 0, V ~ V 0 in Eq 8. 
However, V---)oo in Eq 9. When R ~ Rm, v R --)0,  so that 
V(R)--,oo. In order to avoid that, Eq 9 diverges at R = Rm, the 
equation V(R) is substituted for Eq 9, using a parameter ~ that is 
a numerical value close to and smaller than 1. So V(R) is: 

v#.(. - l)k~pvoZl. ~j~-"> 
V(R)= 2p ~ -J 

v ( ( n -  l)klPV2 ] l/(I-n) 
V(R) = 2p ~ j 

O<R<R~ 

R 0 < R < ~Rm, 

V(R) = V 0 ~R m <_ R <- R m (Eq 52) 

Substituting Eq 52 in Eq 51, the expression becomes: 

vg = ; ~  '[(" -1)k'Pvl!r/(I-"> 

V ~(n - 1)klPv2!l/(l-n) 

+ ~m Vo2~Rd R (Eq 53) 

The radial spreading rate VR can be determined by substituting 
Eq 30 and Eq 32 after differentiating Eq 26 with respect to time 
as follows: 

dR "~-RmV0 R2m - R2 
v R - (Ref54) 

dt 2 ( R 2 -  RI) R 

The gap volume Vg R from R = 0 to R is defined as: 

v ~ = ~ V(n)2nRdR 
U 

(Eq 55) 

The accumulative distribution of  gap volume VgRIVg is deter- 
mined by integrating Eq 53 and Eq 55, after substituting Eq 54 
in Eq 53 and Eq 52 in Eq 55 because the values in 0 -< R < R0 of  
Eq 53 and Eq 55 are negligible compared with those in 
R 0 < R <_ R m. Also, when Rg/R2m is negligible, the expressions 
become, respectively, 

v ~  _ (1 - ~2)3 
for n = 1.5 (Eq 56) 

Vg (1 R2~ 3 ~6 

I 
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for n = 2 (Eq 57) 

Figures 16 and 17 show VgR/Vg as a function of  the normalized 
radius R/Rm, when n = 1.5 and n = 2. They show that the gap 
volume increases with increasing radius and becomes extremely 
large in the periphery of  the splat. Figure 16 shows that when n 
= 1.5, most gap volume exists outside 0.9R m (i.e., in the periph- 
eral region of  the splat). When n = 2, the gap volume begins to 
increase from about 0.4 Rm; it becomes about 10% up to ap- 
proximately 0.7 Rm. It is shown that most gap volume exists in 
the periphery of  the splat. 

Porosity is defined by Eq 1. When same-size molten particles 
impinge at different velocities and all other conditions are the 
same, then the ratio at impinging velocity v 0 to the porosity at 
v00 is expressed as: 

V g 

fp Vs+Vg 

Vs+ % - 1  ~ 

(Eq 58) 

where Vg and Vg0 are the gap volumes at impinging velocities v0 
and v00, respectively;fp andfpo are the porosities at v0 and v00, 
respectively. V s is a splat volume; and Vg for 0 <- R < ~R m is sim- 
plified in Eq 59 and 60. It is assumed that R~/R2m and the first 
term on the right-hand side o f  Eq 53 and are negligible, there- 
fore, integrating the second term, the expression becomes: 

4 :4Po~2(pao ~/3 1 [ ~6 3 
v--1,o6  

g 27 Lg2p ) ~ iX ) V 0 L(1 - g ) ] 

for n = 1.5 (Eq 59) 

Vg = 1.06 2  v0dg/---W "/  - -  + log(1 - ~:)J 

for n = 2 (Eq 60) 

The porosity ratio is shown as a function of  impinging velocity 
in Fig. 18 as fp0 = 0.1 at 100 m/s and n = 1 and 2. Figure 19 
shows the porosity ratio as a function o f  ambient pressure asfp0 
= 0.1 at 1 atm. Figures 18 and 19 show that porosity decreases 
with increasing impinging velocity and increases with increas- 
ing ambient pressure. Equations 59 and 60 show that porosity 
decreases as the density or viscosity of  the molten material in- 
creases. These results seem to be confirmed by empirical knowl- 
edge. 

3. Conclusion 

According to the theory developed in this article, the gap vol- 
ume between the splat and the substrate or previously coated 
layers is minimal in the central portion and relatively larger in 
the periphery of  the splat. It is believed that the interaction force 
between the splat and the substrate within the radius R0 is very 
different from that outside it, because the flow field u outside R 0 

�9 shows that pressure is zero on the substrate surface. The pressure 
at the impingement point is apC0v0 at the moment o f  impinge- 
ment (Ref 1), where a is a constant (about 0.5) and CO is the ve- 
locity of  a compression wave in the molten particle. This 
gradually becomes smaller as the flattening particle expands to 
R0. The bonding force inside R 0 is probably stronger than that 
outside R0. Interaction between the molten particle and the sub- 
strate is strongly affected by the impinging velocity inside R0, 
but not that outside R0. Although wettability of  coating material 
onto the substrate or of  coating material onto prior solidified ma- 
terial is not directly considered in this theory, it might influence 
the interface interaction very much outside R 0. This would be 
particularly true in the periphery of  the splat, when the molten 
material wets the substrate. The radial spreading rate is as fast as 
the impinging velocity in the neighborhood of  R0, so it is ques- 
tionable whether the rate at which molten material wets the sub- 
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strate is faster than the spreading rate and whether the wetting 
action contributes to the interaction when the spreading rate is 
fast. However, because the spreading rate is slow in the outer 
part of the splat, wettability becomes important for porosity and 
bonding. It is believed that the velocity affects porosity and 
bonding when r < R 0 and that the wettability is of prime concern 
when r > Ro. 

This theory illustrates that gaps must be continuous. It is be- 
lieved that closed pores are not produced in the flattening proc- 
ess, because it is difficult for molten material to seal the hole 
completely against the high pressure. Gas probably escapes 
from the hole opening somewhere in the interface between the 
molten material and the substrate. Many paths for gas to escape 
through the interface are made during flattening. With the same 
reasoning, there are few true contact areas in the interface on the 
atomic level, and thus the bonding force is produced by an an- 
chor effect or mechanical bond in thermal spray coating. If the 
molten particle temperature is sufficient to melt the substrate 
material, or if the substrate temperature is so high that it is mol- 
ten, closed pores could conceivably be produced as molten par- 
ticles impinge, and metal or chemical bonding may be achieved. 
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